Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor.

نویسندگان

  • Arbel Artzy Schnirman
  • Efrat Zahavi
  • Hadas Yeger
  • Ronit Rosenfeld
  • Itai Benhar
  • Yoram Reiter
  • Uri Sivan
چکیده

Seamless integration of biomolecules with manmade materials will most likely rely on molecular recognition and specific binding. In the following we show that combinatorial antibody libraries, based on the vast repertoire of the human immune system, can be harnessed to generate such binders. As a demonstration, we isolate antibody fragments that discriminate and bind selectively GaAs (111A) facets as opposed to GaAs (100). The isolated antibodies are utilized for exclusive localization of a fluorescent dye on (111A) surfaces in a structure comprising a mixture of (100) and (111A) surfaces. The potential importance of structure rigidity to facet recognition is suggested vis-a-vis published experiments with short and longer peptides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystalline nano-structures of Ga2O3 with herringbone morphology

Highly crystalline b-Ga2O3 nanowires with two morphologies have been synthesized through physical evaporation of Te doped GaAs powder in Ar atmosphere. Growth is not based on VLS mechanism due to absence of Te. S in place of Te resulted in similar nanostructures. Some of the nanowires exhibit herringbone morphology with presence of hexagonal crystallites in regular spacing along the nanowire ax...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

Comparison of the current of UV ray radiation on PIN Silicon photodiode and Gallium Arsenide

The high-energy UV ray radiation on PIN Silicon photodiodes reduces the optimal parameters of these photodiodes. In this paper, by representing a model, we compare the effect of UV dose on the bright current in these two types of photodiodes and confirm the analytic relationships in order to simulate a model with the help of the Silvaco- Atlas software. In this model, Silicon photodiodes and Ga...

متن کامل

Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies.

Semiconductor quantum dots and wires are important building blocks for future electronic and optoelectronic devices. The common way of producing semiconductor nanostructures is by molecular beam epitaxy (MBE). In this additive growth process atoms are deposited onto crystalline surfaces and self-assemble into 3D structures. Here we present a subtractive process, in which surface vacancies are c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2006